MATHS750 Riemann integration from a topologist's viewpoint

First a bit about filters, which generalise sequences. A *filter* on a set X is a family \mathcal{F} of subsets of X satisfying:

- 1. $\mathcal{F} \neq \emptyset$;
- 2. $\emptyset \notin \mathcal{F};$
- 3. if $F, G \in \mathcal{F}$ then $F \cap G \in \mathcal{F}$;
- 4. if $F \in \mathcal{F}$ and $F \subset G \subset X$ then $G \in \mathcal{F}$.

Some examples of filters include

- $\{x\}^{\uparrow} = \{S \subset X \mid x \in S\}$ (the principal filter at x);
- $\{N \mid N \text{ is a neighbourhood of } x\}$ (the *neighbourhood filter* at x);
- { $F \subset X$ / there is n_0 such that $x_n \in F$ for each $n \ge n_0$ } (the *cofinite filter* of the sequence $\langle x_n \rangle$)

for $x \in X$ and a sequence $\langle x_n \rangle$ of points of X, with X requiring a topology in the second example.

A filter \mathcal{F} converges to a point x of a topological space provided that \mathcal{F} contains all neighbourhoods of x; write $\mathcal{F} \to x$. Note that the cofinite filter of a sequence $\langle x_n \rangle$ converges to x iff $x_n \to x$.

Often it is convenient to specify a filter by a base. A collection \mathcal{B} of subsets of X is a *filterbase* provided:

- 1. $\mathcal{B} \neq \emptyset$;
- 2. $\emptyset \notin \mathcal{B};$
- 3. if $B, C \in \mathcal{B}$ then there is $D \in \mathcal{B}$ such that $D \subset B \cap C$.

Given a filterbase \mathcal{B} we can create the associated filter: $\{F \subset X \mid \text{there is } B \in \mathcal{B} \text{ such that } B \subset F\}$.

The three filters described above have respective bases $\{\{x\}\}$, any neighbourhood base and $\{\{x_n / n \ge m\} / m$ is a positive integer $\}$.

Let $[a, b] \subset \mathbb{R}$. A partition of [a, b] is a subset $P = \{x_0, \ldots, x_n\} \subset [a, b]$ such that $a = x_0 < \ldots < x_n = b$. Write $P = \{x_0 < \ldots < x_n\}$. Denote by \mathcal{P} the collection of all partitions on [a, b].

- Inclusion \subset defines a partial order on \mathcal{P} .
- If $P, Q \in \mathcal{P}$ then $P \cup Q \in \mathcal{P}$ and $P \subset P \cup Q$ and $Q \subset P \cup Q$.

These two points together tell us that (\mathcal{P}, \subset) is what is called a *directed set*: a partially ordered set in which each two elements are bounded above by a common element. The most commonly used directed set is the set of integers with the usual order and it gives rise to sequences. Directed sets give rise to a generalisation of sequences called *nets*. Convergence in a general topological space may be handled equally satisfactorily by filters or nets: I'm afraid that patriotism has got in the way a bit!

Given a partition $P = \{x_0 < \ldots < x_n\}$ of [a, b], a selection for P is an ordered n-tuple $\langle \xi_1, \ldots, \xi_n \rangle$ such that $\xi_i \in [x_{i-1}, x_i]$ for each i.

Now suppose that $f : [a,b] \to \mathbb{R}$. Given a selection $S = \langle \xi_1, \ldots, \xi_n \rangle$ for a partition P of [a,b] let $r_f(P,S) = \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1})$, the Riemann sum for f, P and S. Again for $P \in \mathcal{P}$ let

 $F_f(P) = \{ r_f(Q,T) \mid Q \in \mathcal{P}, P \subset Q \text{ and } T \text{ is a selection for } Q \}.$

Note that if $P \subset Q$ then $F_f(Q) \subset F_f(P)$. From this it follows that $\{F_f(P) \mid P \in \mathcal{P}\}$ is a filterbase, say for the filter \mathcal{F}_f on \mathbb{R} .

The function f is Riemann integrable on [a, b] iff the filter \mathcal{F}_f converges. Further, $\mathcal{F}_f \to \int_a^b f$.